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Backscatter Lidar
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Polarization Sensitivity:

Backscatter from spherical particles
polarized same as transmitter

Backscatter from irregularly shaped particles
(cirrus, dust) exhibits some degree of
depolarization polarization

= Time-of-flight ranging
technique

= Employs pulsed laser
transmitter

= Measures vertically resolved
profiles of backscatter from
molecules and aerosol/cloud
particulates for each laser
shot

— Data may be averaged vertically
and horizontally (combining profiles
from consecutive shots)

= Wavelengths. For ACE,
probably limited to those
available from high-reliability
Nd:YAG or Nd:YLF lasers:

— 1064, 532 nm
— 1064, 532, 355 nm



CALIOP Lidar on CALIPSO Fundamental sampling
— Vertical: 30 m

— Horizontal: 333 m

— IFOV: 90 m

Nearly all Level-2 products
computed at much coarser
resolutions

Calipso Footprint

CALIPSO: Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite
Observations

Launch: 28 April 2006




Liu et al., JGR 2008)




Aerosol and Cloud Observations over South Asia
MODIS

October 25, 2006




Aerosol and Cloud Observations over South Asia
CALIPSO + MODIS

October 25, 2006




Basic Lidar Data Products

= Profile products

— Fundamental products:
o Attenuated backscatter profile
e Total (molecular plus particulate) depolarization profile

— Retrieved products:
e Aerosol/cloud backscatter profile
e Aerosol/cloud extinction profile
e Aerosol/cloud depolarization profile
= Layer heights
— BL layer height
— Top and bottom height of elevated aerosol/cloud layers
= |Layer average products
— Layer integrated backscatter

— Aerosol optical depth
— Layer average depolarization, wavelength dependence, etc.



532 nm Dust Profiles from CALIOP
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Feature Mask and Aerosol Typing

= Aerosols are classified into 6
subtypes

= Algorithm based on lidar
532/1064 and 532 depol data

= Needed to identify extinction-to-
backscatter ratio for extinction
retrieval

= Aids analysis of radiative and

chemical properties Aerosol Type
» Inferred information on i ‘
effective radii and composition IO TR
can aid air quality applications I I I B
Marine Dust FPolluted  Clean Polluted gmoke

Continental Continental Dust



Data Resolution and Averaging

= Fundamental (raw) resolutions
— Vertical: 15-100 m (30 m for CALIPSO)

Horizontal: 1 laser shot
e 175 m for GLAS (40 shots/sec)
e 333 m for CALIPSO (21 shots/sec)

IFOV: depends on laser divergence and telescope FOV.
e 90 m for CALIPSO

= Data Averaging

Only the strongest features (e.g., BL clouds) can be detected at full
resolution

Averaging done in the horizontal and vertical to improve SNR for retrievals

CALIPSO uses a complex multi-grid averaging scheme to identify and
compute layer products on 5, 20, and 80 km horizontal grids

CALIPSO Level-2 aerosol profile products are 40-km horizontal resolution



Cross-Cutting Applications

» Possible to also add channels for
— Ocean subsurface measurements
— Vegetation canopy

= Requires
— Adding receiver channels
— Short laser pulse widths



Backscatter Lidar Retrieval Issues

= Daytime SNR
= Calibration

= Structural error due to error in assumptions



Night vs. Day
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Version: 2,01 Image Date: 02/23/2008

2007-08-23 22-35-37 UTC Nighttime Conditions
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Day SNR

Daytime SNR can be low due to noise in solar background.
Noise can be reduced via narrowband solar rejection filters

CALIPSO and GLAS filters are about as narrow (~40 GHz) as the
laser linewidths allow

— Lasers are multi-mode

ACE lidar can be designed to do much better during day
— Use single-frequency laser and ultra narrow solar rejection filter in receiver
— Use higher laser energy



Calibration

Signal is calibrated to estimated backscatter at some point in the profile
— Molecular backscatter estimated from model (GMAO)

— Aerosol backscatter difficult to estimate. Calibration region chosen where aerosol
backscatter is very low.

CALIPSO calibrated over the 30-34 km region on night side of orbit
— Validation data show calibration has bias of ~5% in mid/low latitudes. Quite good!

— Bias believed to be due to backscatter from stratospheric aerosol, assumed zero in
current version of algorithm

— Future versions of calibration require aerosol model that varies with latitude and season

Solar background noise makes this calibration approach impractical for
day side of orbit.
— On CALIPSO, night calibration interpolated across day side of orbit

— Thermally induced alignment changes have complicated application of night calibration
to day side of orbit.

— CALIPSO team has devised a scheme for estimating and correcting day calibration
errors due to alignment changes

— ACE lidar can be designed to reduce this problem



Structural Error

= Backscatter lidar measures total attenuated backscatter

— Measured Signal = (aerosol + molecular backscatter) x
(two-way transmittance from lidar to scattering volume)

» Aerosol backscatter and aerosol extinction must be retrieved from
total attenuated backscatter

= Retrieval relies upon assumption of the extinction-to-backscatter ratio
— Extinction-to-backscatter ratio = “lidar ratio” = S.

a



Structural Error in Retrieval:
1 equation, 2 unknowns
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Calibration olecular
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igna Coefficient Coefﬁaent

Determined from
measured signals and
meteorological data

-
P(r)=— ,Bm (r)+ By(r)] exp{ 2| [am () +o,(r )]dr’}
0
Particulate Particulate Retrieved
Backscatter Extinction D
Coefficient Coefficient arameters

op\) (r) 5p <«— Assumption of value for extinction-to-
ﬂp(f ) backscatter (5,) ratio required for backscatter
lidar retrieval



Structural Error

2000 T T T T

= Uncertainty in lidar ratio ($) can be a I Histogram of Observed
significant source of error in : Lidar Ratios for Various
backscatter lidar retrievals 1500 - Aerosol Types i

— For aerosols: 10 < S, 53,,,, < 100

= Selection of lidar ratio can be 1000}
narrowed by inferring aerosol type '

= Lidar observables can aid in selection 500 ’
— Chicken-and-egg problem
— Need Level-2 aerosol products to .
better infer aerosol type “u e e o
— Need aerosol type to retrieve Level-2 Extinction to backscatter ratio (532 nm)

products

1 pure dust

= (Can also use other information to 2 dust (large)

narrow selection

— Location (e.g., ocean vs. land)
— Information from models or other sensors

4 oceanic

7 biomass+urban (large) +urban (small)



Constrained Retrieval

= Adding column aerosol optical depth (AOD) constraint can improve
accuracy of lidar retrieval
— MODIS or PARASOL AOD as constraint on CALIPSO retrieval
— Polarimeter AOD as constraint on ACE lidar retrieval

= Effectively enables estimate of column-average lidar ratio for use in
Level-2 lidar extinction and backscatter retrieval
— Generally improves extinction and backscatter retrievals

— However, vertical variation in lidar ratio still leads to structural error.
Studies show significant vertical variation in 40% of cases.

= Constrained retrieval only possible where accurate constraint is
available. Problem areas include

— Sun glint regions of the ocean
— Bright surfaces
— Near clouds (3-D cloud scatter effects bias AOD)



Error in S, and Extinction Using Constrained
Retrieval

Vertical variability of the lidar ratio is examined using HSRL data
acquired during field campaigns from 2006 and 2007

= S varies by more than +/- 10 sr about 40% of the time over 0-6 km layer
= Aerosol extinction derived using HSRL backscatter and the layer AOT

constraint differs by more than +/15% from the aerosol extinction derived
directly using the HSRL technique about 40% of the time

Example: Vertical variability of lidar ratio and other intensive aerosol parameters (Aug. 8, 2006)
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HSRL measurement concept:
(one possible realization at 532 nm)
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HSRL Advantages

Can be internally calibrated, day or night

Independent and more accurate aerosol/cloud
extinction and backscatter profiles (no
assumptions)

More straightforward retrievals

Higher information content for aerosol typing



HSRL — more accurate information on aerosol
extinction, optical depth, and type
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HSRL — more accurate information on aerosol
extinction, optical depth, and type
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Aerosol Optical Thickness Apportionment by Type
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Multiwavelength HSRL

= 3+2a HSRL
{ — Backscatter at 3 wavelengths (38) : 355, 532, 1064 nm
— Extinction at 2 wavelengths (2a) : 355, 532 nm
— Depolarization at 355, 532, and 1064 (dust and contrails/cirrus applications)

» Retrieved, layer-resolved, aerosol microphysical and macrophysical
parameters (Muller et al., 1999, 2000, 2001; Veselovskii et al.,2002,2004)
— Effective and mean particle radius (errors < 30-50%)
— Concentration (number, volume, surface) (errors < 50%)
— Complex index of refraction
» real (x0.05t00.1)
« imaginary (order of magnitude if < 0.01; <50% if > 0.01)
— Single scatter albedo (£0.05)



Multiwavelength HSRL

= Downside of 36+Za retrieval
— Assumes wavelength-independent refractive index
— Currently works only for spherical particles (upgrade to spheroids planned)

— Currently time consuming and requires expert operator (however, Europeans
are adopting and automating retrieval for their ground-based Raman lidar
network)

= However, the technique has been validated against in situ measurements
and is the only known technique of any kind for vertically resolved
microphysical retrievals.



Multi-Wavelength HSRL Issues

* HSRL much more complex than backscatter lidar

» Multi-wavelength HSRL never been demonstrated
— Component technologies have been demonstrated

— Several institutions are working on instrument demonstrations
« LaRC expects to demonstrate an airborne system in 2009
— Retrievals demonstrated via Raman lidar measurements

= Higher risk laser

— Lifetime at 355 nm has not been demonstrated (ADM and EarthCare
missions will demonstrate)

» Multi-wavelength HSRL requires higher power-aperture
product
— More power required for laser
— More volume/mass for the telescope



Progression of Aerosol Lidar Capability

Backscatter Lidar
(GLAS, CALIPSO)

(CALIPSO + A Train)

Backscatter Lidar + Passive

3B+2a Advanced HSRL

(Kaufman et al., 2003;
Léon et al., 2003)

Further enhanced by addition of passive
sensors (e.g. multiangle polarimeter)

= Aerosol layer heights

= Vertical distribution (total
attenuated backscatter)

= Aerosol type vs. altitude

= Extinction, backscatter retrieval
via assumed optical properties

= Extinction via column constraint

» Fine-coarse mode fraction vs.
altitude

= Extinction profile

= Complex refractive index vs.
altitude

= Aerosol size vs. altitude
= SSA vs. altitude
= Concentration vs. altitude



Combined Active-Passive Retrievals

= Anticipate that ACE lidar data will be used in combined
lidar-polarimeter retrieval
—Reduce reliance on limiting assumptions of lidar techniques

—Increase vertical and horizontal resolution at which type and
microphysical information can be retrieved

—Increase accuracy of profile products
—Increase number of parameters that can be retrieved



Multi-Beam Lidar Concept from Previous ACE
Mission Study

= Two-wavelength (532, 1064 nm), polarization-sensitive 1 Day Coverage 3 Day Coverage

= Wider swath for better global coverage:

— Multiple beams increase number of statistical-based mission
observations

— Enables better aerosol emission/source identification
— Improved ability to track plumes during long-range transport
— Combined lidar and imager observations (e.g. ocean biology)

= Beam spacing fine enough to resolve aerosol structure
across most plumes, near sources, and for downwind

advection
Transmit & Receive \R

Telescope Assembly (4)

Sunshade

Improved spatial
coverage through
complicated
aerosol plumes

Wider swath profiling
over difficult ocean
color regions

31



Backups and Leftovers



HSRL: 2 equations, 2 unknowns

Measured Signal on Molecular Scatter (MS) Channel:

CMS
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High Spectral Resolution Lidar (HSRL)

= The HSRL technique offers significant advantages over
the standard backscatter lidar.

— The HSRL technique enables independent retrieval of aerosol
backscatter and extinction without assumption of the lidar ratio.
e Greater accuracy in Level-2 extinction and backscatter products

e Higher information content due to independence of extinction and
backscatter. Lidar ratio is an added intensive observable that can be used to
better infer aerosol type

— The HSRL technique can be internally calibrated

e Does not rely on assumption of aerosol backscatter at some calibration
altitude

e Internal calibration possible over entire orbit, day or night

= The disadvantage to HSRL is greater complexity and
higher power-aperture product



Multi-Wavelength HSRL Issues

= Pros

—Can be internally calibrated, day or night

—More straightforward retrievals

—More accurate extinction and backscatter (no assumptions)
—Higher information content for aerosol typing

—Only method for altitude-resolved microphysical retrievals

= Cons

—HSRL much more complex than backscatter lidar

—Multi-wavelength HSRL never been demonstrated
« Technologies have been demonstrated
» Several institutions are working on instrument demonstrations
» LaRC expects to demonstrate an airborne system in 2009

—Multi-wavelength HSRL requires higher power-aperture product

» More power required for laser
» More volume/mass for the telescope



Error in S, and Extinction Using Constrained

Retrieval

Percent of observations

Vertical variability of the lidar ratio is examined using HSRL data
acquired during field campaigns from 2006 and 2007

Layer average S, — Measured S,

Calculated extinction — HSRL measured extinction
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= S is relatively constant about 60% of the time over the 0-6 km layer

= Aerosol extinction derived using HSRL backscatter and the layer AOT
constraint is within +/15% of the aerosol extinction derived directly
using the HSRL technique about 60% of the time



Problem Area — Model Aerosol Composition
Varies Widely
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Past ACE Lidar Considerations

= Science Working Group convened by HQ in January 2007
to flesh out ACE mission concept
— Better define science objectives/requirements
— Mission concept design and cost estimate

= 2 lidar concepts considered to Science Working Group
— GSFC multi-beam backscatter lidar
— LaRC multi-wavelength HSRL



Multiwavelength HSRL Concept from
Previous ACE mission study

= Measurements
— Backscatter at 355, 532, 1064 nm
— Extinction 355 and 532 nm
— Depolarization 355, 532, 1064 nm
— Ocean subsurface at 532 nm
— Vegetation canopy at 1064 nm

= Instrument summary

— Transmitter:
e 25 W avg. output power
e 2 lasers (1 redundant)

— Telescope: 1.5-m diameter

= Single nadir beam, but higher
information content for
— Lidar + polarimeter retrievals of

aerosol optical and microphysical
parameters

— Lidar + radar cloud retrievals




Not considered in past study:
Multi-Beam Lidar with Wider Field of Regard

0, = 0°, + 35°, + 50°

/
/ o [ [ o ® Imager Swa}#{
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(1/2 Swath)

= Beams spaced by 466 km using multiple apertures, span most of ORCA swath,
provide 1-day “coverage” of the US

= Central 3 beams span half of ORCA swath, provide 2-day US coverage
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Spatial sampling from nadir-viewing lidar

Effective horizontal area over which single nadir beam provides
information on vertical structure of aerosol for one day.
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One-Day Coverage with Wide Field of Regard
Multi-Beam Lidar

= Goal is to get increased coverage to

— Improve statistics on clouds and aerosols (more
samples)

— Provide better coverage to correct aerosol error in
ocean color imager

— Provide data for operational air quality forecast models
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Basic Lidar Data Products: Extensive vs. Intensive

= Extensive products: depend upon aerosol amount and
type
— Attenuated backscatter profile
— Aerosol backscatter profile
— Aerosol extinction profile
— Aerosol optical depth
— Total depolarization ratio

= Intensive products: independent of aerosol amount;
depend only on aerosol type (composition), shape, and
size
— Aerosol depolarization ratio

— Aerosol backscatter wavelength dependence (Angstrom
coefficient for backscatter




HSRL — more accurate information on aerosol
extinction, optical depth, and type

LaRC Airborne HSRL Measurements over Mexico City, March 13, 2006
e western part of city- high S,, high WVD, low depolarization — urban aerosol
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CALIPSO and MODIS Observations of Tropical Depression Helene

September 11, 2006




MODIS True Color Image of Tropical Depression Helene

September 12, 2006




CALIPSO and MODIS Observations of Tropical Depression Helene

September 12, 2006




MODIS True Color Image of Tropical Depression Helene

September 13, 2006
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CALIPSO and MODIS Observations of Tropical Depression Helene

September 13, 2006
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CALIPSO and MODIS Observations of Tropical Depression Helene

September 14, 2006




Cloud and Aerosol

from CALIPSO
Dave Winker
NASA Langley, Hampton VA




First light: 7 June 2006

Sun-synchronous orbit

Three co-aligned instruments:

= CALIOP: polarization lidar

- 70-meter footprint

- 1/3 km footprint spacing
= JIR: Imaging IR radiometer
= WFC: Wide-Field Camera

Calipso Footprint




Laser Energy Trend through May 2008
(~1.2 billion shots)

5% energy loss in first billion shots
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CALIOP First Light Observations

June 9, 2006
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Sahara dust above marine aerosol
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Three-channel profiles provide
insight into aerosol type, mixing
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Liu et al., JGR 2008)




532 nm Dust Profiles from CALIOP
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Aerosol and Cloud Observations over South Asia
MODIS

October 25, 2006




Aerosol and Cloud Observations over South Asia
CALIPSO + MODIS

October 25, 2006




Jan 2007

Dust Poll. Dust Poll. Continental

Q.0 0.2 0.4 0.6 0.8 1.0

fraction of observations



Aerosol Type, MAM 2007

Poll. Dust Poll. Continental

1 1 |
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number of observations



N
=
=)
o
=
<
=
m
o
<
O
v
o
|
=
<
O

L0



)
=
o0
© s 2
n:
(- a
Q o =
e Lo
AR
7, i
. =
(@]
(@) O
= )
<L a)
| N | O
7 S
o
m g
2
= o
@) -
<
= O <1
O > 3
= 7
© o
m ]
a
iy,
S



AOD, cloud-free columns: 6/06-5/07

Global

™NRO0B0615 — 20070531 CALIPSO Might{Green), Day(Red) and MODIS (Blus)
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Altitude [k
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Zonal Mean Extinction
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Altitude [k
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Fractional Cloud Cover: Low,

ASs _ =7 _____ e __B_
Jan2007; Cloud Coverage; Low Clouda

.........................

Jan2007; Cloud Coverage; High Clouds
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Arctic cloud: MAM

Cloud Fraction: All cloud
Cloud Detected: 20070301 to 20070531

0.4 0.6
Fractonal Coverage

Mean = 0.709264

High Cloud Detected: 20070301 to 20070531
i e
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Fractional cher'nge
High Cloud > £.5 km, Mean = 0.283088

Q.0 0.2
Low Cloud < 3.25 km, Mean = 0.427.

0.4 0.6 08 1.0

Fractional Coverage
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Altitude (k)
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Fraction of

transmissive cloud Mean extinction:

ice cloud
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Claud Fraction, Transmissive Clouds Cloud Extinction, lece Phase Clouds

Results from cloud profile product, using scene classification
and QA flags from 5-km cloud layer product




Zonal Fraction of Ice and Water,
W3 n > (o)

Jan2007; Zonal Cloud Coverage; Ice Clouds Jan2007; Zonal Cloud Coverage; Water Clouds
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Clouds defined as “Ice” with a mid-layer temperature greater than 5 degrees,
contained within 50N to 50S, were re-defined to “Water”.



